Bridging the rheology of granular flows in three regimes.
نویسندگان
چکیده
We investigate the rheology of granular materials via molecular dynamics simulations of homogeneous, simple shear flows of soft, frictional, noncohesive spheres. In agreement with previous results for frictionless particles, we observe three flow regimes existing in different domains of particle volume fraction and shear rate, with all stress data collapsing upon scaling by powers of the distance to the jamming point. Though this jamming point is a function of the interparticle friction coefficient, the relation between pressure and strain rate at this point is found to be independent of friction. We also propose a rheological model that blends the asymptotic relations in each regime to obtain a general description for these flows. Finally, we show that departure from inertial number scalings is a direct result of particle softness, with a dimensionless shear rate characterizing the transition.
منابع مشابه
Numerical Simulation of Granular Column Collapses with Pressure-Dependent Viscoplastic Model using the Smoothed Particle Hydrodynamic Method
This paper presents a numerical analysis of granular column collapse phenomenon using a two-dimensional smoothed particle hydrodynamics model and a local constitutive law proposed by Jop et al. This constitutive law, which is based on the viscoplastic behaviour of dense granular material flows, is characterized by an apparent viscosity depending both on the local strain rate and the local press...
متن کاملRheology and contact lifetimes in dense granular flows.
We study the rheology and distribution of interparticle contact lifetimes for gravity-driven, dense granular flows of noncohesive particles down an inclined plane using large-scale, three dimensional, granular dynamics simulations. Rather than observing a large number of long-lived contacts as might be expected for dense flows, brief binary collisions predominate. In the hard-particle limit, th...
متن کاملUnified rheology of vibro-fluidized dry granular media: From slow dense flows to fast gas-like regimes
Granular media take on great importance in industry and geophysics, posing a severe challenge to materials science. Their response properties elude known soft rheological models, even when the yield-stress discontinuity is blurred by vibro-fluidization. Here we propose a broad rheological scenario where average stress sums up a frictional contribution, generalizing conventional μ(I)-rheology, a...
متن کاملRheological properties of dense granular flows
Recent progresses in understanding the behavior of dense granular flows are presented. After presenting a bulk rheology of granular materials, I focus on the new developments to account for non-local effects, and on ongoing research concerning the surface rheology and the evolution of mechanical properties for heterogeneous systems.
متن کاملPartially fluidized shear granular flows: continuum theory and molecular dynamics simulations.
The continuum theory of partially fluidized shear granular flows is tested and calibrated using two-dimensional soft particle molecular dynamics simulations. The theory is based on the relaxational dynamics of the order parameter that describes the transition between static and flowing regimes of granular material. We define the order parameter as a fraction of static contacts among all contact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 85 2 Pt 1 شماره
صفحات -
تاریخ انتشار 2012